(本小题满分14分,第Ⅰ小题5分,第Ⅱ小题4分,第Ⅲ小题5分). 数列的各项均为正数,为其前项和,对于任意,总有成等差数列. (Ⅰ)求数列的通项公式; (Ⅱ)设数列的前项和为 ,且,求证:对任意实数(是常数,=2.71828)和任意正整数,总有 2; (Ⅲ) 正数数列中,.求数列中的最大项.
((本小题满分13分)已知函数,存在实数满足下列条件:①;②;③(1)证明:;(2)求b的取值范围.
(本小题满分13分)已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x-2y=0的距离为,求该圆的方程.
(本小题满分13分)已知且,求:(1)的最小值; (2)若直线与轴、轴分别交于、,求(O为坐标原点)面积的最小值.
(本小题满分10分)选修4一l:几何证明选讲如图,已知AP是圆O的切线,P为切点,AC是圆O的割线,与圆O交于B,C两点,圆心O在的内部,点M是BC的中点.(Ⅰ)证明A,P,O,M四点共圆;(Ⅱ)求的大小。
(本小题满分12分)已知函数在 处有极值。(Ⅰ)求函数的单调区间;(Ⅱ)若函数在[-3,3]上有且仅有一个零点,求的取值范围。