(本小题满分14分,第Ⅰ小题5分,第Ⅱ小题4分,第Ⅲ小题5分). 数列的各项均为正数,为其前项和,对于任意,总有成等差数列. (Ⅰ)求数列的通项公式; (Ⅱ)设数列的前项和为 ,且,求证:对任意实数(是常数,=2.71828)和任意正整数,总有 2; (Ⅲ) 正数数列中,.求数列中的最大项.
已知为复数,为纯虚数,,且,求复数.
已知函数,,其中. (1)若是函数的极值点,求实数的值; (2)若对任意的(为自然对数的底数)都有≥成立,求实数的取值范围.
设函数f(x)=x2-mlnx,g(x)=x2-x+a. (1)当a=0时,f(x)≥g(x)在(1,+∞),上恒成立,求实数m的取值范围; (2)当m=2时,若函数h(x)=f(x)-g(x)在[1,3]上恰有两个不同的零点,求实数a的取值范围.
设f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f′(x)的最小值为-12. (1)求函数f(x)的解析式; (2)求函数f(x)的单调增区间,并求函数f(x)在[-1,3]上的最大值和最小值.
如右图,由曲线与直线,,所围成平面图形的面积.