能够把椭圆:的周长和面积同时分为相等的两部分的函数称为椭圆的“亲和函数”,下列函数是椭圆的“亲和函数”的是( )
A. |
B. |
C. |
D. |
若存在实常数和,使得函数和对其公共定义域上的任意实数都满足:和恒成立,则称此直线为和的“隔离直线”,已知函数,有下列命题:
①在内单调递增;
②和之间存在“隔离直线”,且的最小值为;
③和之间存在“隔离直线”,且的取值范围是;
④和之间存在唯一的“隔离直线”.
其中真命题的个数有( )
A.个 | B.个 | C.个 | D.个 |
(本题12分)对于函数,若,则称为的“不动点”,若,则称为的“稳定点”,函数的“不动点”和“稳定点”的集合分别记为A和B,即.
(1)设,求集合A和B;
(2)若,,求实数的取值范围;
若函数为定义域上的单调函数,且存在区间(其中),使得当,的取值范围恰为,则称函数是上的正函数.若函数是上的正函数,则实数的取值范围为
A. | B. | C. | D. |
对于函数和,设,,若存在,使得,则称与互为“零点相邻函数”.若函数与互为“零点相邻函数”,则实数的取值范围是( )
A. | B. | C. | D. |
如果对定义在R上的函数,对任意,都有则称函数为“H函数”.给出下列函数:
①;
②;
③;
④.
其中函数式“H函数”的个数是( )
A.4 | B.3 | C.2 | D.1 |
(本小题满分12分)设函数在上的导函数为,在上的导函数为,若在上,恒成立,则称函数在上为“凸函数”.已知.
(1)若为区间上的“凸函数”,试确定实数的值;
(2)若当实数满足时,函数在上总为“凸函数”,求的最大值.
已知函数f (x)="f" (p-x),且当时,f (x)="x+tan" x,设a="f" (1),b="f" (2),c="f" (3),则 ( )
A.a<b<c | B.b<c<a | C.c<b<a | D.c<a<b |
定义在上的函数,如果对于任意给定的等比数列,仍是等比数列,则称为“保等比数列函数”. 现有定义在上的如下函数:
① ② ③ ④.
则其中是“保等比数列函数”的的序号为
A.①② | B.③④ | C.①③ | D.②④ |
(本小题满分16分)对于函数,如果存在实数使得,那么称为的生成函数.
(1)下面给出两组函数,是否分别为的生成函数?并说明理由;
第一组:;
第二组:;
(2)设,生成函数.若不等式在上有解,求实数的取值范围.
对函数,在使成立的所有常数中,我们把的最大值叫做函数的下确界.现已知定义在R上的偶函数满足,当时,,则的下确界为 ( )
A. | B. | C. | D. |