(本小题满分12分) 已知方程(为实数)有两个不相等的实数根,分别求:
(Ⅰ)若方程的根为一正一负,则求实数的取值范围;
(Ⅱ)若方程的两根都在内,则求实数的取值范围
已知f(x)是定义在R上的偶函数,且x≤0时,, 若f (x)≥x+a“对于任意x∈R恒成立,则常数a的取值范围是( )
A. | B. | C. | D. |
已知函数,,设.
(1)求的单调区间;
(2)若以图象上任意一点为切点的切线的斜率
恒成立,求实数的最小值.
(3)是否存在实数,使得函数的图象与的图
象恰好有四个不同的交点?若存在,求出的取值范围,若不存在,说明理由.
定义域为[]的函数图像的两个端点为A、B,M(x,y)是图象上任意一点,其中.已知向量,若不等式恒成立, 则称函数在[]上“k阶线性近似”.若函数在[1,2]上“k阶线性近似”,则实数k的取值范围为( )
A.[0,+∞) B.
C. D.
函数 的图像如图所示,在区间 上可找到 个不同的数 ,使得 ,则 的取值范围为()
A. | B. | ||
C. | D. |