(本小题满分16分)
已知函数=+,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,)上单调递减,在(,上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.
(本小题满分14分)
已知函数的极值点为和.
(Ⅰ)求实数,的值;
(Ⅱ)试讨论方程根的个数;
(Ⅲ)设,斜率为的直线与曲线交于
两点,试比较与的大小,并给予证明.
对于定义域为的函数,若有常数M,使得对任意的,存在唯一的满足等式,则称M为函数f (x)的“均值”.
(1)判断1是否为函数≤≤的“均值”,请说明理由;
(2)若函数为常数)存在“均值”,求实数a的取值范围;
(3)若函数是单调函数,且其值域为区间I.试探究函数的“均值”情况(是否存在、个数、大小等)与区间I之间的关系,写出你的结论(不必证明).
说明:对于(3),将根据结论的完整性与一般性程度给予不同的评分
.(本小题满分14分)
已知函数是函数的极值点.
(1)求实数的值;
(2)若方程有两个不相等的实数根,求实数m的取值.
(本小题满分12分)已知函数的最小正
周期为,其图象的一条对称轴是直线.
(Ⅰ)求,;
(Ⅱ)求函数的单调递减区间;
(Ⅲ)画出函数在区间上的图象.
(本小题满分14分)
已知函数的图象在上连续不断,定义:
,
.
其中,表示函数在上的最小值,表示函数在上的最大值.若存在最小正整数,使得对任意的成立,则称函数为上的“阶收缩函数”.
(Ⅰ)若,,试写出,的表达式;
(Ⅱ)已知函数,,试判断是否为上的“阶收缩函数”,如果是,求出对应的;如果不是,请说明理由;
(Ⅲ)已知,函数是上的2阶收缩函数,求的取值范围.
(本小题满分14分)
已知函数,
(I)当时,求函数的极值;
(II)若函数在区间上是单调增函数,求实数的取值范围.
设数列的前项和为,对一切,点都在函数图像上,设为数列的前项积,是否存在实数,使得对一切都成立?若存在,求出的范围,若不存在,请说明理由
已知函数。
(1)若函数是上的增函数,求实数的取值范围;
(2)当时,若不等式在区间上恒成立,求实数的取值范围;
(3)对于函数若存在区间,使时,函数的值域也是,则称是上的闭函数。若函数是某区间上的闭函数,试探求应满足的条件。
已知当点在的图像上运动时,点函数的图像上运动。
(1)求的表达式;
(2)若集合{关于的方程有实根,},求集合A;
(3)设函数的定义域为<值域为,求实数的值。