设函数是定义在上的奇函数,当时,(a为实数).(1)当时,求的解析式;(2)当时,试判断在上的单调性,并证明你的结论.
(本小题满分12分)已知椭圆的离心率为,直线被以椭圆的短轴为直径的圆截得弦长为,抛物线以原点为顶点,椭圆的右焦点为焦点.(Ⅰ)求椭圆与抛物线的方程; (Ⅱ)已知,是椭圆上两个不同点,且⊥,判定原点到直线的距离是否为定值,若为定值求出定值,否则,说明理由.
(本小题满分12分)已知函数(a∈R),.(Ⅰ)求函数的单调区间;(Ⅱ)已知当时,,求证:当时,不等式成立.
(本小题满分12分)在平面直角坐标系中,点是圆上一动点,轴于点,记满足的动点的轨迹为.(Ⅰ)求轨迹的方程;(Ⅱ)是曲线与轴正半轴的交点, 曲线上是否存在两点,使得是以为直角顶点的等腰直角三角形?若存在,请说明有几个;若不存在,请说明理由.
(本小题满分12分)如图所示的几何体中,内接于圆,且是圆的直径,四边形为矩形,且.(Ⅰ)证明:;(Ⅱ)若且二面角所成角的余弦值是,试求该几何体的体积.
(本小题满分12分)某校为了提高学生身体素质,决定组建学校足球队,学校为了解报名学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右3个小组的频率之比为,其中第2小组的频数为.(Ⅰ)求该校报名学生的总人数;(Ⅱ)若从报名的学生中任选3人,设表示体重超过60kg的学生人数,求的数学期望与方差.