.[必做题](本小题满分10分)已知,(其中).(1)求;(2)求证:当时,.
如图,边长为2的正方形ABCD,E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于.(1)求证:⊥EF;(2)求二面角的平面角的余弦值.
在一个盒子里装有6枝圆珠笔,其中3枝一等品,2枝二等品,1枝三等品.(1)从盒子里任取3枝恰有1枝三等品的概率多大?;(2)从盒子里任取3枝,设为取出的3枝里一等品的枝数,求的分布列及数学期望.
已知函数(1)当时,求的最大值及相应的x值;(2)利用函数y=sin的图象经过怎样的变换得到f(x)的图象.
如果项数均为的两个数列满足且集合,则称数列是一对“项相关数列”.(Ⅰ)设是一对“4项相关数列”,求和的值,并写出一对“项关数列”;(Ⅱ)是否存在“项相关数列”?若存在,试写出一对;若不存在,请说明理由;(Ⅲ)对于确定的,若存在“项相关数列”,试证明符合条件的“项相关数列”有偶数对.
已知函数,.(Ⅰ)求函数的单调递增区间;(Ⅱ)设点为函数的图象上任意一点,若曲线在点处的切线的斜率恒大于,求的取值范围.