为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了更好地了解市民的态度,在普通行人中随机选取了200人进行调查,得到如下数据:(Ⅰ)若用表中数据所得频率代替概率,则处罚10元时与处罚20元时,行人会闯红灯的概率的差是多少?(Ⅱ)若从这5种处罚金额中随机抽取2种不同的金额进行处罚,在两个路口进行试验.求这两种金额之和不低于20元的概率;②若用X表示这两种金额之和,求X的分布列和数学期望.
已知函数. (1)求函数在区间上的最大、最小值; (2)求证:在区间上,函数的图象在函数的图象的下方
某地区的一种特色水果上市时间仅能持续5个月,预测上市初期和后期会因供不应求使价格呈连续上涨态势,而中期又将出现供大于求使价格下跌.现有三种价格模拟函数:①;②;③.(以上三式中均为常数,且) (1)为准确研究其价格走势,应选哪种价格模拟函数,为什么? (2)若,,求出所选函数的解析式(注:函数的定义域是).其中表示4月1日,表示5月1日,…,依此类推; (3)为保护果农的收益,打算在价格下跌期间积极拓宽外销,请你预测该果品在哪几个月内价格下跌.
已知数列的前项和. (1)计算,,,; (2)猜想的表达式,并用数学归纳法证明你的结论
已知抛物线在点处的切线与直线垂直,求函数的最值.
已知复数,若,求的值.