(本小题满分16分)已知函数=+,a≠0且a≠1.(1)试就实数a的不同取值,写出该函数的单调增区间;(2)已知当x>0时,函数在(0,)上单调递减,在(,上单调递增,求a的值并写出函数的解析式;(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.
△ABC中,BC=7,AB=3,且=.(1)求AC的长; (2)求∠A的大小.
已知函数(1)求在点处的切线方程;(2)若存在,使成立,求的取值范围;(3)当时,恒成立,求的取值范围.
已知数列的前项和和通项满足数列中,(1)求数列,的通项公式;(2)数列满足是否存在正整数,使得时恒成立?若存在,求的最小值;若不存在,试说明理由.
如图,为圆的直径,点、在圆上,,矩形所在的平面和圆所在的平面互相垂直,且,.(1)设的中点为,求证:平面;(2)设平面将几何体分成的两个锥体的体积分别为,,求.
已知等差数列的前项和为,(1)求数列的通项公式与前项和;(2)设求证:数列中任意不同的三项都不可能成为等比数列.