已知四棱锥中,平面,底面是直角梯形,为的重心,为的中点,在上,且;(1)求证:;(2)当二面角的正切值为多少时,平面;(3)在(2)的条件下,求直线与平面所成角的正弦值;
为了测量两山顶 M , N 间的距离,飞机沿水平方向在 A , B 两点进行测量, A , B , M , N 在同一个铅垂平面内(如示意图),飞机能够测量的数据有俯角和 A , B 间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M,N间的距离的步骤.
已知f(x)、g(x)是定义在[a,b]上的函数,若对任意,总有,则称f(x)可被g(x)替代,试判断函数能否被替代,并说明理由.
已知函数 (1)判断函数的奇偶性; (2)若在区间是增函数,求实数的取值范围.
设函数上满足,且在闭区间[0,7]上,只有 (1)试判断函数的奇偶性; (2)试求方程在闭区间[-2005,2005]上的根的个数,并证明你的结论.
某蔬菜基地种植番茄,由历年市场行情得知,从二月一日起的300天内,番茄市场售价与上市时间的关系用图(1)的一条折线表示;番茄的种植成本与上市时间的关系用图(2)的抛物线表示. (1)写出图1表示的市场售价与时间的函数关系式P=f(t);图2表示的种植成本与时间的函数关系式Q=g(t); (2)市场售价减去种植成本为纯收益,问何时上市的番茄纯收益最大?(注:市场售价和种植成本的单位:元/102,kg,时间单位:天)