已知函数()(1)若的定义域和值域均是,求实数的值;(2)若对任意的,,总有,求实数的取值范围.
设二次函数满足下列条件: ①当时, 的最小值为0,且恒成立; ②当时,恒成立.(I)求的值;(Ⅱ)求的解析式;(Ⅲ)求最大的实数m(m>1),使得存在实数t,只要当时,就有成立
建造一条防洪堤,其断面为等腰梯形,腰与底边成角为(如图),考虑到防洪堤坚固性及石块用料等因素,设计其断面面积为平方米,为了使堤的上面与两侧面的水泥用料最省,则断面的外周长(梯形的上底线段与两腰长的和)要最小.(1)求外周长的最小值,并求外周长最小时防洪堤高h为多少米?(2)如防洪堤的高限制在的范围内,外周长最小为多少米?
已知函数在点处的切线方程为(1)求函数的解析式;(2)若对于区间[-2,2]上任意两个自变量的值都有求实数c的最小值.
已知向量(1)当时,求的值;(2)设函数,求的单调增区间;(3)已知在锐角中,分别为角的对边,,对于(2)中的函数,求的取值范围。
已知函数,(1)当时,求的最大值和最小值(2)若在上是单调函数,且,求的取值范围。