建造一条防洪堤,其断面为等腰梯形,腰与底边成角为(如图),考虑到防洪堤坚固性及石块用料等因素,设计其断面面积为平方米,为了使堤的上面与两侧面的水泥用料最省,则断面的外周长(梯形的上底线段与两腰长的和)要最小.(1)求外周长的最小值,并求外周长最小时防洪堤高h为多少米?(2)如防洪堤的高限制在的范围内,外周长最小为多少米?
已知圆和椭圆的一个公共点为.为椭圆的右焦点,直线与圆相切于点. (Ⅰ)求值和椭圆的方程; (Ⅱ)圆上是否存在点,使为等腰三角形?若存在,求出点的坐标.
已知函数,其中是自然对数的底数. (Ⅰ)求函数的图象在处的切线方程; (Ⅱ)求函数在区间上的最大值与最小值.
一个三棱柱直观图和三视图如图所示(主视图、俯视图都是矩形,左视图是直角三角形),设、分别为和的中点. (Ⅰ)求几何体的体积; (Ⅱ)证明:平面; (Ⅲ)证明:平面平面.
汽车是碳排放量比较大的行业之一.欧盟规定,从2012年开始,将对排放量超过的型新车进行惩罚.某检测单位对甲、乙两类型品牌车各抽取辆进行排放量检测,记录如下(单位:).
经测算发现,乙品牌车排放量的平均值为. (Ⅰ)从被检测的5辆甲类品牌车中任取2辆,则至少有一辆不符合排放量的概率是多少? (Ⅱ)若,试比较甲、乙两类品牌车排放量的稳定性.
已知向量,,其中.函数在处取最小值. (Ⅰ)求的值; (Ⅱ)设,,为的三个内角,若,,求.