设是锐角三角形,分别是内角A,B,C所对边长,并且(Ⅰ)求角A的值; (Ⅱ)若,求(其中).
设函数f(x)=x3-ax2-ax,g(x)=2x2+4x+c. (1)试问函数f(x)能否在x=-1时取得极值?说明理由; (2)若a=-1,当x∈[-3,4]时,函数f(x)与g(x)的图象有两个公共点,求c的取值范围.
设函数f(x)=ax2+bx+c,且f(1)=-,3a>2c>2b,求证: (1)a>0,且-3<<-; (2)函数f(x)在区间(0,2)内至少有一个零点; (3)设x1,x2是函数f(x)的两个零点,则≤|x1-x2|<.
已知函数f(x)=ln x+-1. (1)求函数f(x)的单调区间; (2)设m∈R,对任意的a∈(-1,1),总存在x0∈[1,e],使得不等式ma-f(x0)<0成立,求实数m的取值范围.
已知函数f(x)=. (1)求函数f(x)的最小值; (2)已知m∈R,命题p:关于x的不等式f(x)≥m2+2m-2对任意m∈R恒成立;q:函数y=(m2-1)x是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.
设定义在(0,+∞)上的函数f(x)=ax++b(a>0). (1)求f(x)的最小值; (2)若曲线y=f(x)在点(1,f(1))处的切线方程为y=x,求a,b的值.