设二次函数满足下列条件: ①当时, 的最小值为0,且恒成立; ②当时,恒成立.(I)求的值;(Ⅱ)求的解析式;(Ⅲ)求最大的实数m(m>1),使得存在实数t,只要当时,就有成立
求圆心为(1,1)并且与直线相切的圆的方程。
已知 (1)若,求的极小值; (2)是否存在实数使的最小值为3.
直线与抛物线交于不同的两点P、Q,若PQ中点的横坐标是2. (1)求的值; (2)求弦的长.
已知函数,其图象在点处的切线与直线垂直. (1)求的值; (2)求函数在上的最大值和最小值.
已知抛物线的顶点在原点,对称轴是轴,抛物线上的点到焦点的距离等于,求抛物线的方程和的值.