(本题满分12分)已知是定义在上的奇函数,且时,. (1)求,(2)求函数的表达式;(3)若,求的取值范围
求经过直线L1:与直线L2:的交点M且满足下列条件的直线方程:(1)与直线平行;(2)与直线垂直。
((本小题12分)如图,在梯形中,,,四边形为矩形,平面平面,.(1)求证:平面;(2)求二面角A-BF-C的平面角的余弦值;(3)若点在线段上运动,设平面与平面所成二面角的平面角为,试求的取值范围.
((本小题10分) 已知椭圆的两个焦点为、,点在椭圆G上,且,且,斜率为1的直线与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(-3,2).(1)求椭圆G的方程;(2)求的面积.
(本小题9分)设直线3x+y+=0与圆x2+y2+x-2y=0相交于P、Q两点,O为坐标原点,若OPOQ,求的值.
(本小题9分)已知矩形的两条对角线相交于点,边所在直线的方程为:,点在边所在直线上.(1)求矩形外接圆的方程;(2)求矩形外接圆中,过点的最短弦所在的直线方程.