((本小题12分)如图,在梯形中,,,四边形为矩形,平面平面,.(1)求证:平面;(2)求二面角A-BF-C的平面角的余弦值;(3)若点在线段上运动,设平面与平面所成二面角的平面角为,试求的取值范围.
(本小题满分10分)(Ⅰ)证明: .(Ⅱ)已知圆的方程是,则经过圆上一点的切线方程为:,类比上述性质,试写出椭圆类似的性质.
(本小题满分14分)已知函数,且 (Ⅰ)试用含的代数式表示;(Ⅱ)求 的单调区间;(Ⅲ)令,设函数 在 处取得极值,记点 证明:线段与曲线 存在异于、的公共点.
(本小题满分13分) 如图,已知点A(1,)是离心率为的椭圆C:上的一点,斜率为的直线BD交椭圆C于B、D两点,且A、B、D三点互不重合.(Ⅰ)求椭圆C的方程;(Ⅱ)求证:直线AB、AD的斜率之和为定值.
(本小题满分12分)已知数列满足.(Ⅰ)设,证明:数列为等差数列,并求数列的通项公式;(Ⅱ)求数列的前项和.
(本小题满分12分)已知三棱柱ABC-中,平面⊥底面ABC,BB′⊥AC,底面ABC是边长为2的等边三角形,=3,E、F分别在棱,上,且AE==2.(Ⅰ)求证:⊥底面ABC;(Ⅱ)在棱上找一点M,使得∥平面BEF,并给出证明.