高中数学

数列中,,若存在实数,使得数列
等差数列,则=_________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,将圆分成n个区域,用3种不同颜色给每一个区域染色,要求相邻区域颜色互异,把不同的染色方法种数记为。求

(1)的关系式;
(2)数列的通项公式,并证明:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

对于项数为的有穷数列数集,记,即中的最大值,并称数列的控制数列.如的控制数列是.
(1)若各项均为正整数的数列的控制数列为,写出所有的
(2)设的控制数列,满足为常数,).求证:.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在一个数列中,如果对任意,都有为常数,那么这个数列叫做等积数列,叫做这个数列的公积.已知数列是等积数列,且,公积为,记的前项和为,则:
(1)         
(2)          

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设不等式组所表示的平面区域为Dn,记Dn内的整点个数为an(n∈N*)(整点即横坐标和纵坐标均为整数的点).
(1)求数列{an}的通项公式;
(2)记数列{an}的前n项和为Sn,且Tn.若对于一切的正整数n,总有Tn≤m,求实数m的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

有一个数阵排列如下:

则第20行从左至右第10个数字为           .

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设数列{an}的前n项和为Sn.已知a1=1,=an+1n2-n-,n∈N*.
(1)求a2的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

对于各项均为整数的数列,如果为完全平方数,则称数列具有“P性质”,如果数列不具有“P性质”,只要存在与不是同一数列的,且同时满足下面两个条件:①的一个排列;②数列具有“P性质”,则称数列具有“变换P性质”,下面三个数列:
①数列1,2,3,4,5; ②数列1,2,3, ,11,12; ③数列的前n项和为.
其中具有“P性质”或“变换P性质”的有(     )

A.③ B.①③ C.①② D.①②③
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知an
(1)求数列{an}的前10项和S10
(2)求数列{an}的前2k项和S2k.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

轴的正方向上,从左向右依次取点列 ,以及在第一象限内的抛物线上从左向右依次取点列,使)都是等边三角形,其中是坐标原点,则第2005个等边三角形的边长是      .

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如果有穷数列满足条件: 即我们称其为“对称数列”.例如:数列1,2,3,3,2,1 和数列1,2,3,4,3,2,1都为 “对称数列”。已知数列是项数不超过的“对称数列”,并使得依次为该数列中连续的前项,则数列的前2009项和所有可能的取值的序号为
 

 

A.①②③ B.②③④ C.①②④ D.①③④
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

对于一个有限数列,定义的蔡查罗和(蔡查罗是一位数学家)为,其中.若一个99项的数列(的蔡查罗和为1000,那么100项数列的蔡查罗和为(  )

A.993 B.995 C.997 D.999
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

对于给定数列,如果存在实常数使得对于任意都成立,我们称数列是 “线性数列”.
(1)若,数列是否为“线性数列”?若是,指出它对应的实常数,若不是,请说明理由;
(2)证明:若数列是“线性数列”,则数列也是“线性数列”;
(3)若数列满足为常数.求数列项的和.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知数列满足,给出下列命题:
①当时,数列为递减数列
②当时,数列不一定有最大项
③当时,数列为递减数列
④当为正整数时,数列必有两项相等的最大项
请写出正确的命题的序号____

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知正项数列满足:,数列的前项和为,且满足.
(1)求数列的通项公式;
(2)设,数列的前项和为,求证:.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学一阶、二阶线性常系数递归数列的通项公式试题