(本小题16分)如图所示,数列的前项的和,为数列的前项的和,且.
(1)求数列、的通项公式;
(2)找出所有满足:的自然数的值(不必证明);
(3)若不等式对于任意的,恒成立,求实数的最小值,并求出此时相应的的值.
数列{an}满足an+an+1=(n∈N*),且a1=1,Sn是数列{an}的前n项和,则S21=( )
A. | B.6 |
C.10 | D.11 |
已知等差数列的公差为,且,若,则为
A.12 | B.10 | C.8 | D.4 |
已知数列的前项和和通项满足数列中,
(1)求数列,的通项公式;
(2)数列满足是否存在正整数,使得时恒成立?若存在,求的最小值;若不存在,试说明理由.
已知数列{an}的前n项和为Sn,点(n,)在直线y=x+上.数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),b3=11,且其前9项和为153.
(1)求数列{an},{bn}的通项公式;
(2)设cn=,数列{cn}的前n项和为Tn,求使不等式Tn>对一切n∈N*都成立的最大正整数k的值.
定义:在数列{an}中,若满足-=d(n∈N*,d为常数),我们称{an}为“比等差数列”.已知在“比等差数列”{an}中,a1=a2=1,a3=2,则的个位数字是( )
A.3 | B.4 | C.6 | D.8 |