已知数列{an}的前n项和为Sn,点(n,)在直线y=x+上.数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),b3=11,且其前9项和为153.(1)求数列{an},{bn}的通项公式;(2)设cn=,数列{cn}的前n项和为Tn,求使不等式Tn>对一切n∈N*都成立的最大正整数k的值.
已知斜率为的直线过抛物线的焦点,且与抛物线交于两点,(1)求直线的方程(用表示);(2)若设,求证:;(3)若,求抛物线方程.
设函数满足: (其中a、b、c均为常数,且|a|≠|b|),试求.
已知双曲线的中心在坐标原点,焦点在轴上,实轴长是虚轴长的倍,且过点,求双曲线的标准方程及离心率.
已知命题:“若,则二次方程没有实根”.(1)写出命题的否命题;(2)判断命题的否命题的真假,并证明你的结论.
已知函数(1)若求的单调区间及的最小值;(2)若,求的单调区间;(3)试比较)的大小,,并证明你的结论。