(本小题12分)已知均为正数,证明:并确定为何值时,等号成立。
在 ∆ A B C 中,内角 A , B , C 的对边分别为 a , b , c ,且 b sin A = 3 a cos B 。 (1)求角 B 的大小; (2)若 b = 3 , sin C = 2 sin A ,求 a , c 的值
定义:曲线 C 上的点到直线l的距离的最小值称为曲线 C 到直线l的距离,已知曲线 C 1 : y = x 2 + a 到直线 l : y = x 的距离等于曲线 C 2 : x 2 + ( y + 4 ) 2 = 2 到直线 l : y = x 的距离,则实数 a =
已知函数 f ( x ) = x - ln ( x + a ) 的最小值为0,其中 a > 0
(Ⅰ)求 a 的值; (Ⅱ)若对任意的 x ∈ [ 0 , + ∞ ) 有 f ( x ) ≤ k x 2 成立,求实数 k 的最小值; (Ⅲ)证明 ∑ i = 1 n 2 2 i - 1 - ln ( 2 n + 1 ) < 2 , ( n ∈ N * ) .
设椭圆 x 2 a 2 + y 2 b 2 = 1 a > b > 0 的左、右顶点分别为 A , B ,点 P 在椭圆上且异于 A , B 两点, O 为坐标原点. (Ⅰ)若直线 A P 与 B P 的斜率之积为 - 1 2 ,求椭圆的离心率; (Ⅱ)若 A P = O A ,证明直线 O P 的斜率 k 满足 k > 3
已知 a n 是等差数列,其前 n 项和为 S n , b n 是等比数列,且 a 1 = b 1 = 2 , a 4 + b 4 = 27 , S 4 - b 4 = 10 . (Ⅰ)求数列 a n 与 b n 的通项公式; (Ⅱ)记 T n = a n b 1 + a n - 1 b 2 + ⋯ + a 1 b n , n ∈ N * ,证明 T n + 12 = - 2 a n + 10 b n ( n ∈ N * ).