设椭圆 x 2 a 2 + y 2 b 2 = 1 a > b > 0 的左、右顶点分别为 A , B ,点 P 在椭圆上且异于 A , B 两点, O 为坐标原点. (Ⅰ)若直线 A P 与 B P 的斜率之积为 - 1 2 ,求椭圆的离心率; (Ⅱ)若 A P = O A ,证明直线 O P 的斜率 k 满足 k > 3
(本小题满分16分)在直角坐标平面中,的两个顶点为,平面内两点同时满足:为的重心;到三点的距离相等;直线的倾斜角为.(1)求证:顶点在定椭圆上,并求椭圆的方程;(2)设都在曲线上,点,直线都过点并且相互垂直,求四边形的面积的最大值和最小值.
(本小题满分16分)(1)求右焦点坐标是,且经过点的椭圆的标准方程.(2)已知椭圆,设斜率为的直线交椭圆于两点,的中点为,证明:当直线平行移动时,动点在一条过原点的定直线上.(3)利用(2)中所揭示的椭圆几何性质,用作图方法找出图中的定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心.
(本小题满分15分)学校科技小组在计算机上模拟航天器变轨返回试验.设计方案如图:航天器运行(按顺时针方向)的轨迹方程为 ,变轨(即航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以y轴为对称轴、为顶点的抛物线的实线部分,降落点为.观测点,同时跟踪航天器.(1)求航天器变轨后的运行轨迹所在的曲线方程;(2)试问:当航天器在x轴上方时,观测点A、B测得离航天器的距离分别为多少时,应向航天器发出变轨指令?
(本小题满分15分)如图,在四棱柱中,已知平面, 且. (1)求证:; (2)在棱BC上取一点E,使得∥平面,求的值.
如图,在四棱锥P‐ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,E为PD的中点.求证:(1)PB∥平面AEC;(2)平面PCD⊥平面PAD.