琼海市菠萝从5月1日起开始上市,通过市场调查,得到菠萝种植成本Q(单位:元/100kg)与上市时间t(单位:天)的数据如下表:
(1)根据表中数据,从下列函数中选取一个函数,描述菠萝种植成本Q与上市时间t的变化关系;;;(2)利用你选取的函数,求菠萝种植成本最低时的上市天数及最低种植成本。
在直角坐标系中,圆的参数方程为参数).以为极点,轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆的极坐标方程;(Ⅱ)直线的极坐标方程是,射线与圆的交点为,与直线的交点为,求线段的长.
设函数,其中为常数。(Ⅰ)当时,判断函数在定义域上的单调性;(Ⅱ)若函数有极值点,求的取值范围及的极值点。
已知椭圆的离心率为,且过点.(1)求椭圆的方程;(2)若过点C(-1,0)且斜率为的直线与椭圆相交于不同的两点,试问在轴上是否存在点,使是与无关的常数?若存在,求出点的坐标;若不存在,请说明理由.
如图,四棱锥的底面是直角梯形,,,和是两个边长为的正三角形,,为的中点,为的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面;(Ⅲ)求直线与平面所成角的正弦值.
为了解某市今年初二年级男生的身体素质状况,从该市初二年级男生中抽取了一部分学生进行“掷实心球”的项目测试.成绩低于6米为不合格,成绩在6至8米(含6米不含8米)的为及格,成绩在8米至12米(含8米和12米,假定该市初二学生掷实心球均不超过12米)为优秀.把获得的所有数据,分成五组,画出的频率分布直方图如图所示.已知有4名学生的成绩在10米到12米之间.(Ⅰ)求实数的值及参加“掷实心球”项目测试的人数;(Ⅱ)根据此次测试成绩的结果,试估计从该市初二年级男生中任意选取一人,“掷实心球”成绩为优秀的概率;(Ⅲ)若从此次测试成绩不合格的男生中随机抽取2名学生再进行其它项目的测试,求所抽取的2名学生来自不同组的概率.