已知 a n 是等差数列,其前 n 项和为 S n , b n 是等比数列,且 a 1 = b 1 = 2 , a 4 + b 4 = 27 , S 4 - b 4 = 10 . (Ⅰ)求数列 a n 与 b n 的通项公式; (Ⅱ)记 T n = a n b 1 + a n - 1 b 2 + ⋯ + a 1 b n , n ∈ N * ,证明 T n + 12 = - 2 a n + 10 b n ( n ∈ N * ).
如图,制图工程师要用两个同中心的边长均为4的正方形合成一个八角形图形.由对称性,图中8个三角形都是全等的三角形,设. (1)试用表示的面积; (2)求八角形所覆盖面积的最大值,并指出此时的大小.
已知,其中是常数. (1)若是奇函数,求的值; (2)求证:的图像上不存在两点A、B,使得直线AB平行于轴.
在直三棱柱中,,,求: (1)异面直线与所成角的大小; (2)直线到平面的距离.
已知函数在处存在极值. (1)求实数的值; (2)函数的图像上存在两点A,B使得是以坐标原点O为直角顶点的直角三角形,且斜边AB的中点在轴上,求实数的取值范围; (3)当时,讨论关于的方程的实根个数.
已知椭圆的右焦点为F2(1,0),点在椭圆上. (1)求椭圆方程; (2)点在圆上,M在第一象限,过M作圆的切线交椭圆于P、Q两点,问|F2P|+|F2Q|+|PQ|是否为定值?如果是,求出定值,如不是,说明理由.