(本小题满分12分)定义的零点为的不动点,已知函数
.
(Ⅰ)当时,求函数的不动点;
(Ⅱ)对于任意实数,函数恒有两个相异的不动点,求实数的取值范围;
(Ⅲ)若函数只有一个零点且,求实数的最小值.
(本题满分14分,第1小题6分,第2小题8分)
已知函数的反函数为
(1)若,求实数的值;
(2)若关于的方程在区间内有解,求实数的取值范围;
设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(﹣1)=( )
A.﹣3 | B.﹣1 | C.1 | D.3 |
对于函数,有下列4个结论:
①任取,都有恒成立;
②,对于一切恒成立;
③函数有3个零点;
④对任意,不等式恒成立.
则其中所有正确结论的序号是 .
(本小题满分13分)设,函数,函数,.
(Ⅰ)当时,写出函数零点个数,并说明理由;
(Ⅱ)若曲线与曲线分别位于直线的两侧,求的所有可能取值.
.下列说法:
①函数的零点只有1个且属于区间;
②若关于的不等式恒成立,则;
③函数的图像与函数的图像有3个不同的交点;
④函数的最小值是1.
正确的有 .(请将你认为正确说法的序号都写上)