给定函数和常数,若恒成立,则称为函数的一个“好数对”;若恒成立,则称为函数的一个“类好数对”.已知函数的定义域为.
(1)若是函数的一个“好数对”,且,求;
(2)若是函数的一个“好数对”,且当时,,求证:
函数在区间上无零点;
(3)若是函数的一个“类好数对”,,且函数单调递增,比较与的大小,并说明理由.
(本小题10分)设是二次函数,方程有两个相等的实根,且.
(1)求的表达式;
(2)若直线把的图象与两坐标轴所围成图形的面积二等分,求的值.
(本小题满分16分)已知函数(是不同时为零的常数),导函数为.
(1)当时,若存在,使得成立,求的取值范围;
(2)求证:函数在内至少有一个零点;
(3)若函数为奇函数,且在处的切线垂直于直线,关于的方程,在上有且只有一个实数根,求实数的取值范围.
(本小题满分13分)某单位有员工1000名,平均每人每年创造利润10万元。为了增加企业竞争力,决定优化产业结构,调整出名员工从事第三产业,调整后他们平均每人每年创造利润为万元,剩下的员工平均每人每年创造的利润可以提高.
(Ⅰ)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?
(Ⅱ)在(Ⅰ)的条件下,若调整出的员工创造的年总利润始终不高于剩余员工创造的年总利润,则的取值范围是多少?
(本小题满分16分)设命题:方程无实数根;命题:函数的值是.如果命题为真命题,为假命题,求实数的取值范围。
(本小题满分13分)函数(为常数)的图象过点.
(1)求的值;
(2)函数在区间上有意义,求实数的取值范围;
(3)讨论关于的方程(为常数)的正根的个数.