已知函数,若函数恰有4个零点,则实数a的取值范围为 .
已知等差数列满足:,的前n项和为. (1)求及; (2)令,求数列的前n项和.
已知函数 ⑴求的最小正周期及对称中心; ⑵若,求的最大值和最小值.
设函数,数列满足. ⑴求数列的通项公式; ⑵设,若对恒成立,求实数的取值范围; ⑶是否存在以为首项,公比为的数列,,使得数列中每一项都是数列中不同的项,若存在,求出所有满足条件的数列的通项公式;若不存在,说明理由.
已知函数在点处的切线方程为. ⑴求函数的解析式; ⑵若对于区间上任意两个自变量的值都有,求实数的最小值; ⑶若过点可作曲线的三条切线,求实数的取值范围.
扬州某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为平方米,且高度不低于米.记防洪堤横断面的腰长为(米),外周长(梯形的上底线段与两腰长的和)为(米). ⑴求关于的函数关系式,并指出其定义域; ⑵要使防洪堤横断面的外周长不超过米,则其腰长应在什么范围内? ⑶当防洪堤的腰长为多少米时,堤的上面与两侧面的水泥用料最省(即断面的外周长最小)?求此时外周长的值.