某示范性高中的校长推荐甲、乙、丙三名学生参加某大学自主招生考核测试,在本次考核中只有合格和优秀两个等级.若考核为合格,授予10分降分资格;考核为优秀,授予20分降分资格.假设甲、乙、丙考核为优秀的概率分别为、、,他们考核所得的等级相互独立.(1)求在这次考核中,甲、乙、丙三名学生至少有一名考核为优秀的概率;(2)记在这次考核中甲、乙、丙三名学生所得降分之和为随机变量ξ,求随机变量ξ的分布列和数学期望.
(本小题满分12分)为考察高中生的性别与喜欢数学课程之间的关系,在某学校高中生中随机抽取了250名学生,得到如图的二维条形图. (1)根据二维条形图,完形填空2×2列联表: (2)对照如表,利用列联表的独立性检验估计,请问有多大把握认为“性别与喜欢数学有关系”?
(本小题满分12分)在平行六面体中,,,是的中点. (1)证明面; (2)当平面平面,求.
【改编题】在锐角中,分别为的对边,已知. (1)求; (2)当,求的面积得最大值.
【原创】若数列的前项和,则()是等比数列 B.是等差数列 C.当时,是等比数列 D.当时,是等比数列
(本小题满分14分)已知函数处的切线l与直线垂直,函数 (Ⅰ)求实数的值; (Ⅱ)若函数存在单调递减区间,求实数的取值范围; (Ⅲ)设是函数的两个极值点,若,求的最小值.