已知(m为常数,m>0且m≠1).
设(n∈)是首项为m2,公比为m的等比数列.
(1)求证:数列是等差数列;
(2)若,且数列的前n项和为Sn,当m=2时,求Sn;
(3)若,问是否存在m,使得数列中每一项恒小于它后面的项?若存在,求出m的范围;若不存在,请说明理由.
根据统计,组装第x件某产品(),甲工人所用的时间为,乙工人所用的时间为(,为常数)(单位:分钟).已知乙工人组装第4件产品用时15分钟,组装第件产品用时10分钟.
(Ⅰ)求和的值;
(Ⅱ)组装第x件某产品,甲工人的用时是否可能多于乙工人的用时?若可能,求出所有x的值;若不可能,请说明理由.
为了预防流感,某学校对教室用药熏消毒法进行消毒。已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为为常数),如图所示。
(1)请写出从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式;
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过多少小时后,学生才能回到教室。