高中数学

某中学将名高一新生分成水平相同的甲、乙两个“平行班”,每班人,吴老师采用两种不同的教学方式分别在甲、乙两个班进行教学实验.为了解教学效果,期末考试后,分别从两个班级中各随机抽取名学生的成绩进行统计,作出的茎叶图如下:

记成绩不低于分者为“成绩优秀”.
(1)在乙班样本的个个体中,从不低于分的成绩中随机抽取个,记随机变量为抽到“成绩优秀”的个数,求的分布列及数学期望
(2)由以上统计数据填写下面列联表,并判断有多大把握认为“成绩优秀”与教学方式有关?

 
甲班(方式)
乙班(方式)
总计
成绩优秀
 
 
 
成绩不优秀
 
 
 
总计
 
 
 

 

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

( 本小题满分12分) 某高校在上学期依次举行了“法律、环保、交通”三次知识竞赛活动,要求每位同学至少参加一次活动.该高校2014级某班50名学生在上学期参加该项活动的次数统计如图所示

(1)从该班中任意选两名学生,求他们参加活动次数不相等的概率.
(2)从该班中任意选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量的分布列及数学期望
(3)从该班中任意选两名学生,用表示这两人参加活动次数之和,记“函数在区间(3,5)上有且只有一个零点”为事件A,求事件A发生的概率.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某煤矿发生透水事故时,作业区有若干人员被困.救援队从入口进入之后有两条巷道通往作业区(如下图),巷道有三个易堵塞点,各点被堵塞的概率都是巷道有两个易堵塞点,被堵塞的概率分别为

(1)求巷道中,三个易堵塞点最多有一个被堵塞的概率;
(2)若巷道中堵塞点个数为,求的分布列及数学期望,并按照"平均堵塞点少的巷道是较好的抢险路线"的标准,请你帮助救援队选择一条抢险路线,并说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知正方形的边长为分别是边的中点.
(1)在正方形内部随机取一点,求满足的概率;
(2)从这八个点中,随机选取两个点,记这两个点之间的距离的平方为,求随机变量的分布列与数学期望

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10次,投中的次数统计如下表:

学生
1号
2号
3号
4号
5号
甲班
6
5
7
9
8
乙班
4
8
9
7
7

 
(1)从统计数据看,甲、乙两个班哪个班成绩更稳定(用数字特征说明);
(2)若把上表数据作为学生投篮命中率,规定两个班级的1号和2号同学分别代表自己的班级参加比赛,每人投篮一次,将甲、乙两个班两名同学投中的次数之和分别记作,试求的分布列和数学期望.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)甲、乙两人对弈棋局,甲胜、乙胜、和棋的概率都是,规定有一方累计2胜或者累计2和时,棋局结束。棋局结束时,若是累计两和的情形,则宣布甲乙都获得冠军;若一方累计2胜,则宣布该方获得冠军,另一方获得亚军。设结束时对弈的总局数为X.
(1)设事件A:“X=3且甲获得冠军”,求A的概率;
(2)求X的分布列和数学期望。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知一个袋子里装有只有颜色不同的6个小球,其中白球2个,黑球4个,现从中随机取球,每次只取一球.
(1)若每次取球后都放回袋中,求事件“连续取球四次,至少取得两次白球”的概率;
(2)若每次取球后都不放回袋中,且规定取完所有白球或取球次数达到五次就终止游戏,记游戏结束时一共取球X次,求随机变量X的分布列与期望.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某个海边旅游景点,有小型游艇出租供游客出海游玩,收费标准如下:租用时间不超过2小时收费100,超过2小时的部分按每小时100收取(不足一小时按一小时计算).现甲、乙两人独立来该景点租用小型游艇,各租一次.设甲、乙租用不超过两小时的概率分别为;租用2小时以上且不超过3小时的概率分别为,且两人租用的时间都不超过4小时.
(Ⅰ)求甲、乙两人所付费用相同的概率;
(Ⅱ)设甲、乙两人所付的费用之和为随机变量,求的分布列与数学期望.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)有一种密码,明文是由三个字符组成,密码是由明文对应的五个数字组成,编码规则如下表:明文由表中每一排取一个字符组成,且第一排取的字符放在第一位,第二排取的字符放在第二位,第三排取的字符放在第三位,对应的密码由明文对应的数字按相同的次序排成一组
组成.

第一排
明文字符
A
B
C
D
密码字符
11
12
13
14
第二排
明文字符
E
F
G
H
密码字符
21
22
23
24
第三排
明文字符
M
N
P
Q
密码字符
1
2
3
4

 
设随机变量表示密码中所含不同数字的个数.
(Ⅰ)求
(Ⅱ)求随机变量的分布列和它的数学期望.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)
为了普及环保知识,增强环保意识,某校从理科甲班抽取60人,从文科乙班抽取50人参加环保知识测试.
(Ⅰ)根据题目条件完成下面2×2列联表,并据此判断是否有99%的把握认为环保知识成绩优秀与学生的文理分类有关.

 
优秀人数
非优秀人数
总计
甲班
 
 
 
乙班
 
30
 
总计
60
 
 

(Ⅱ)现已知三人获得优秀的概率分别为,设随机变量表示三人中获得优秀的人数,求的分布列及期望.附: 


0.100
0.050
0.025
0.010
0.005

2.706
3.841
5.024
6.635
7.879

 

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.

(Ⅰ)求该校报考飞行员的总人数;
(Ⅱ)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图的频率分布直方图.


(1)若直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;
(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有
关系,对年级名次在名和名的学生进行了调查,得到右表中数据,根据表中的数据,
能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好
的护眼习惯,并且在这9人中任取3人,记名次在的学生人数为,求的分布列和数学期望.
附:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某校高一年级有四个班,其中一、二班为数学课改班,三、四班为数学非课改班.在期末考试中,课改班与非课改班的数学成绩优秀与非优秀人数统计如表.

 
优秀
非优秀
总计
课改班
 
50
 
非课改班
20
 
110
合计
 
 
210

(1)请完成上面的2×2列联表,并判断若按99%的可靠性要求,能否认为“成绩与课改有关”;
(2)把全部210人进行编号,从编号中有放回抽取4次,每次抽取1个,记被抽取的4人中的优秀人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列及数学期望Eξ.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分13分)某学习兴趣小组开展“学生语文成绩与英语成绩的关系”的课题研究,对该校高二年级800名学生上学期期末语文和英语成绩进行统计,按优秀和不优秀进行分类.记集合A={语文成绩优秀的学生},B={英语成绩优秀的学生}.如果用表示有限集合M中元素的个数.已知,
,,其中U表示800名学生组成的全集.
(1)是否有99.9%的把握认为“该校学生的语文成绩与英语成绩优秀与否有关系” ;
(2)将上述调查所得的频率视为概率,从该校高二年级的学生成绩中,有放回地随机抽取3次,记所抽取的成绩中,语文英语两科成绩中至少有一科优秀的人数为,求的分布列和数学期望.
附:
参考数据:


0.025
0.010
0.005
0.001

5.024
6.635
7.879
10.828

 

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

2014年中国汽车销售量达到2000多万辆,成为世界汽车销售的冠军,各大品牌与国内自主品牌纷纷加大促销力度,争取2015年实现新的突破.某知名品牌的汽车店,对最近位采用分期付款的购车者进行统计,统计结果如右表所示:已知分期付款的频率为店经销一辆该品牌的汽车,顾客分期付款, 其利润为万元;分期或期付款其利润为万元;分期或期付款,其利润为万元.用表示经销一辆汽车的利润.

付款方式





频  数
40
20

10

 
(Ⅰ)求上表中的值;
(Ⅱ)若以频率作为概率,求事件:“购买该品牌汽车的位顾客中,至多有位采用期付款”的概率
(Ⅲ)求的分布列及数学期望

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学随机思想的发展解答题