某个海边旅游景点,有小型游艇出租供游客出海游玩,收费标准如下:租用时间不超过2小时收费100,超过2小时的部分按每小时100收取(不足一小时按一小时计算).现甲、乙两人独立来该景点租用小型游艇,各租一次.设甲、乙租用不超过两小时的概率分别为,;租用2小时以上且不超过3小时的概率分别为,,且两人租用的时间都不超过4小时.(Ⅰ)求甲、乙两人所付费用相同的概率;(Ⅱ)设甲、乙两人所付的费用之和为随机变量,求的分布列与数学期望.
如图,在直角梯形中,°,,平面,,,设的中点为,. (1) 求证:平面; (2) 求四棱锥的体积.
在中,分别是角所对的边,且满足. (1) 求的大小; (2) 设向量,求的最小值.
已知复数. (1) 求z的共轭复数; (2) 若,求实数的值.
已知直线的方程为,圆的方程为. (1) 把直线和圆的方程化为普通方程; (2) 求圆上的点到直线距离的最大值.
已知函数,其中且m为常数. (1)试判断当时函数在区间上的单调性,并证明; (2)设函数在处取得极值,求的值,并讨论函数的单调性.