为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.(Ⅰ)求该校报考飞行员的总人数;(Ⅱ)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望.
已知的三个顶点的坐标为.(1)求边上的高所在直线的方程;(2)若直线与平行,且在轴上的截距比在轴上的截距大1,求直线与两条坐标轴围成的三角形的周长.
已知函数,若函数的最小值是且对称轴是,. (1)求的值; (2)在(1)条件下求在区间 的最小值.
已知函数.(1)证明是奇函数;(2)判断的单调性,并用定义证明;(3)求在[-1,2] 上的最值.
已知是定义在上的偶函数,且时,.(Ⅰ)求,;(Ⅱ)求函数的表达式;(Ⅲ)若,求的取值范围.
若,求函数的最大值和最小值.