已知的三个顶点的坐标为.(1)求边上的高所在直线的方程;(2)若直线与平行,且在轴上的截距比在轴上的截距大1,求直线与两条坐标轴围成的三角形的周长.
为坐标原点,已知向量分别对应复数,且,,可以与任意实数比较大小,求的值.
已知函数在处取得极值,求函数以及的极大值和极小值.
设是函数的一个极值点. (1)求与的关系式(用表示),并求的单调区间; (2)设,在区间[0,4]上是增函数.若存在使得成立,求的取值范围.
已知函数:f(x)=x3+ax2+bx+c,过曲线y=f(x)上的点P(1,f(1))的切线方程为y=3x+1 (1)y=f(x)在x=-2时有极值,求f(x)的表达式; (2)函数y=f(x)在区间[-2,1]上单调递增,求b的取值范围.
为实数, (1)求导数; (2)若,求在[-2,2] 上的最大值和最小值.