(本小题满分13分)盒中装有7个零件,其中5个是没有使用过的,2个是使用过的.
(Ⅰ)从盒中每次随机抽取1个零件,有放回的抽取3次,求3次抽取中恰有2次抽到使用过零件的概率;
(Ⅱ)从盒中任意抽取3个零件,使用后放回盒子中,设X为盒子中使用过零件的个数,求X的分布列和期望.
(本小题满分12分)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙公司和丙公司面试的概率均为p,,且三个公司是否让其面试是相互独立的.记为该毕业生得到面试的公司个数,若P(=0)=.
(1)求p的值:
(2)求随机变量的分布列及数学期望.
(本小题满分14分)已知三棱锥中,,.如图,从由任何二个顶点确定的向量中任取两个向量,记变量为所取两个向量的数量积的绝对值.
(1)当时,求的值.
(2)当时,求变量的分布列与期望.
某校校庆,各届校友纷至沓来,某班共来了位校友(),其中女校友6位,组委会对这位校友登记制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合” ..
(1)若随机选出的2位校友代表为“最佳组合”的概率不小于,求的最大值;
(2)当时,设选出的2 位校友代表中女校友人数为,求随机变量的分布列和数学期望.
一个商场经销某种商品,根据以往资料统计,每位顾客采用的分期付款次数ξ的分布列为:
商场经销一件该商品,采用1期付款,其利润为200元;采用2期或3期付款,其利润为250元;采用4期或5期付款,其利润为300元.表示经销一件该商品的利润.
(1)求购买该商品的3位顾客中,恰有2位采用1期付款的概率;
(2)求η的分布列及期望E().
为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽样100名市民,按年龄情况进行统计的频率分布表Ⅰ和频率分布直方图2,
频率分布表Ⅰ
(1)频率分布表中的①②位置应填什么数?并补全频率分布直方图,再根据频率分布直方图统计这500名志愿者得平均年龄;
(2)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加的宣传活动,再从这20名中选取2名志愿者担任主要发言人.记这2名志愿者中“年龄低于30岁”的人数为X,求X的分布列及数学期望.
(本小题满分12分)已知一个袋子中有3个白球和3个红球,这些球除颜色外完全相同.
(Ⅰ)每次从袋中取出一个球,取出后不放回,直到取到一个红球为止,求取球次数的分布列和数学期望;
(Ⅱ)每次从袋中取出一个球,取出后放回接着再取一个球,这样取3次,求取出红球次数的数学期望.
在一个盒子中,放有大小相同的红、白、黄三个小球,从中任意摸出一球,若是红球记分,白球记分,黄球记分.现从这个盒子中,有放回地先后摸出两球,所得分数分别记为,,设为坐标原点,点的坐标为,记.
(1)求随机变量的最大值,并求事件“取得最大值”的概率;
(2)求随机变量的分布列和数学期望.
(本小题满分14分)某中学在高二开设了A,B,C,D共4门选修课,每个学生必须且只需选修1门选修课,对于该年级的甲、乙、丙3名学生。
(Ⅰ)求这3名学生选择的选修课互不相同的概率;
(Ⅱ)求恰有2门选修课没有被这3名学生选择的概率;
(Ⅲ)求A选修课被这3名学生选择的人数的数学期望.
某大学准备在开学时举行一次大学一年级学生座谈会,拟邀请20名来自本校机械工程学院、海洋学院、医学院、经济学院的学生参加,各学院邀请的学生数如下表所示:
(Ⅰ)从这20名学生中随机选出3名学生发言,求这3名学生中任意两个均不属于同一学院的概率;
(Ⅱ)从这20名学生中随机选出3名学生发言,设来自医学院的学生数为ξ,求随机变量ξ的概率分布列和数学期望.
某班同学利用五一节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念,则称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组数 |
分组 |
低碳族 的人数 |
占本组 的频率 |
1 |
[25,30) |
120 |
0.6 |
2 |
[30,35) |
195 |
P |
3 |
[35,40) |
100 |
0.5 |
4 |
[40,45) |
a |
0.4 |
5 |
[45,50) |
30 |
0.3 |
6 |
[50,55) |
15 |
0.3 |
(1)请补全频率分布直方图,并求n、a、p的值;
(2)在所得样本中,从[40,50)岁年龄段的“低碳族”中采用分层抽样法抽取18人参加户外低碳体验活动,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X,求X的分布列和数学期望EX.
某鱼类养殖户在一个鱼池中养殖一种鱼,每季养殖成本为元,此鱼的市场价格与鱼池的产量均具有随机性,且互不影响,其具体情况如下表:
鱼池产量() |
|
鱼的市场价格(元/) |
||||
概率 |
|
概率 |
(1)设表示在这个鱼池养殖季这种鱼的利润,求的分布列和期望;
(2)若在这个鱼池中连续季养殖这种鱼,求这季中至少有季的利润不少于元的概率.
甲、乙两名篮球运动员,各自的投篮命中率分别为与,如果每人投篮两次.
(Ⅰ)求甲比乙少投进一次的概率;
(Ⅱ)若投进一个球得分,未投进得分,求两人得分之和的分布列及数学期望.
(本小题满分12分)甲、乙两袋中各装有大小相同的小球个,其中甲袋中红色、黑色、白色小球的个数分别为、、,乙袋中红色、黑色、白色小球的个数均为,某人用左右手分别从甲、乙两袋中取球.
(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;
(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为随机变量,求的分布列和数学期望.
为了促进学生的全面发展,某市教育局要求本市所有学校重视社团文化建设,2014年该市某中学的某新生想通过考核选拨进入该校的“电影社”和“心理社”,已知该同学通过考核选拨进入这两个社团成功与否相互独立.根据报名情况和他本人的才艺能力,两个社团都能进入的概率为,至少进入一个社团的概率为,并且进入“电影社”的概率小于进入“心理社”的概率.
(Ⅰ)求该同学分别通过选拨进入“电影社”的概率和进入“心理社”的概率;
(Ⅱ)学校根据这两个社团的活动安排情况,对进入“电影社”的同学增加1个校本选修课学分,对进入“心理社”的同学增加0.5个校本选修课学分.求该同学在社团方面获得校本选修课学分分数的分布列和数学期望.