某校校庆,各届校友纷至沓来,某班共来了位校友(),其中女校友6位,组委会对这位校友登记制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合” ..(1)若随机选出的2位校友代表为“最佳组合”的概率不小于,求的最大值;(2)当时,设选出的2 位校友代表中女校友人数为,求随机变量的分布列和数学期望.
已知(1)求函数的最小正周期及在区间上的最大值和最小值;(2)若,,求的值.
设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且.(1)求椭圆的离心率;(2)若过三点的圆与直线相切,求椭圆的方程;(3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,线段的中垂线与轴相交于,求实数的取值范围.
设 x1、x2()是函数 ()的两个极值点.(1)若 ,,求函数 的解析式;(2)若 ,求的最大值.
设数列的前项和为,点在直线上.(1)求数列的通项公式;(2)在与之间插入个数,使这个数组成公差为的等差数列,求数列的前n项和.
在△ABC中,a,b,c分别为内角A,B,C的对边, 面积(1)求角C的大小;(2)设函数,求的最大值,及取得最大值时角B的值.