设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且.(1)求椭圆的离心率;(2)若过三点的圆与直线相切,求椭圆的方程;(3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,线段的中垂线与轴相交于,求实数的取值范围.
已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x–1)=f(3–x)且方程f(x)=2x有等根. (1)求f(x)的解析式;(2)是否存在实数m,n(m<n=,使f(x)定义域和值域分别为[m,n]和[4m,4n],如果存在,求出m、n的值;如果不存在,说明理由.
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点 已知函数f(x)=ax2+(b+1)x+(b–1)(a≠0) (1)若a=1,b=–2时,求f(x)的不动点; (2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围; (3)在(2)的条件下,若y=f(x)图像上A、B两点的横坐标是函数f(x)的不动点,且A、B关于直线y=kx+对称,求b的最小值.
已知函数f(x)=x2–(m+1)x+m(m∈R)(1)若tanA,tanB是方程f(x)+4=0的两个实根,A、B是锐角三角形ABC的两个内角 求证:m≥5;(2)对任意实数α,恒有f(2+cosα)≤0,证明m≥3;(3)在(2)的条件下,若函数f(sinα)的最大值是8,求m.
已知函数f(x)=logm(1)若f(x)的定义域为[α,β],(β>α>0),判断f(x)在定义域上的增减性,并加以说明;(2)当0<m<1时,使f(x)的值域为[logm[m(β–1)],logm[m(α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由.
已知a、b为实数,且b>a>e,其中e为自然对数的底,求证: ab>ba.