设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且.(1)求椭圆的离心率;(2)若过三点的圆与直线相切,求椭圆的方程;(3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,线段的中垂线与轴相交于,求实数的取值范围.
如图,AB是圆O的直径,D,E为圆O上位于AB异侧的两点,连结BD并延长至点C,使BD=DC,连结AC,AE,DE. 求证:∠E=∠C.
如图,⊙O和⊙O′相交于A,B两点,过A作两圆的切线分别交两圆于C,D两点,连结DB并延长交⊙O于点E.证明: (1)AC·BD=AD·AB; (2)AC=AE.
如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D。 (1)证明:DB=DC; (2)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径。
如图,已知△ABC的两条角平分线AD和CE相交于H,∠B=60°,F在AC上,且AE=AF. (1)证明:B、D、H、E四点共圆; (2)证明:CE平分∠DEF.
如图,已知梯形ABCD的对角线AC与BD相交于P点,两腰BA、CD的延长线相交于O点,EF∥BC且EF过P点.求证:(1)EP=PF;(2)OP平分AD和BC.