现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;
(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(Ⅲ)用
分别表示这4个人中去参加甲、乙游戏的人数,记
,求随机变量
的分布列与数学期望
.
根据以往的经验,某工程施工期间的降水量
(单位:
)对工期的影响如下表:
降水量 | ||||
工期延误天数 | 0 |
2 |
6 |
10 |
历年气象资料表明,该工程施工期间降水量
小于300,700,900的概率分别为0.3,0.7,0.9. 求:
(Ⅰ)工期延误天数
的均值与方差;
(Ⅱ)在降水量X至少是300的条件下,工期延误不超过6天的概率.
某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:
从第一个顾客开始办理业务时计时.
(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;
(2)
表示至第2分钟末已办理完业务的顾客人数,求
的分布列及数学期望.
设服从二项分布B(n,p)的随机变量ξ的期望和方差分别是2.4与1.44,则二项分布的参数n、p的值为( )
A.n=4,p=0.6 | B.n=6,p=0.4 |
C.n=8,p=0.3 | D.n=24,p=0.1 |
(用数字表示结果)
某校举行环保知识大奖赛,比赛分初赛和决赛两部分,初赛采用选一题答一题的方式进行。每位选手最多有5次答题机会。选手累计答对3题或答错三题终止初赛的比赛。答对三题直接进入决赛,答错3题则被淘汰。已知选手甲连续两次答错的概率为(已知甲回答每个问题的正确率相同,并且相互之间没有影响)
(1)求选手甲回答一个问题的正确率;
(2)求选手甲进入决赛的概率;
(3)设选手甲在初赛中答题个数为X,试写出X的分布列,并求甲在初赛中平均答题个数。
某学校设计了一个实验学科的考查方案:考生从6道备选题中一次性抽取3道题,规定至少正确完成其中2道题便可通过,已知6道备选题中考生甲有4道能正确完成,2道不能完成;考生乙正确完成每道题的概率都是,且每题正确完成与否互不影响.
⑴求甲正确完成的题数的分布列及期望;求乙正确完成的题数的分布列及期望;
⑵请用统计知识分析比较两名考生这门学科的水平.
某保险公司新开设了一项保险业务,若在一年内事件E发生,该公司要赔偿元.设在一年内发生的概率为1%,为使公司收益的期望值等于的百分之十,公司应要求顾客交保险金为
元.(用含的代数式表示)
某学校要从5名男生和2名女生中选出2人作为志愿者,若用随机变量表示选出的志愿者中女生的人数,则数学期望=____________.(结果用最简分数表示)
学校文娱队的每位队员唱歌、跳舞至少会一项,已知会唱歌的有2人,会跳舞的有5人,现从中选2人.设为选出的人中既会唱歌又会跳舞的人数,且.
(1)求文娱队的队员人数;
(2)写出的概率分布列并计算
有一种舞台灯,外形是正六棱柱,在其每一个侧面(编号为①②③④⑤⑥)上安装5只颜色各异的灯,假若每只灯正常发光的概率为0.5,若一个侧面上至少有3只灯发光,则不需要更换这个面,否则需要更换这个面,假定更换一个面需要100元,用表示更换的面数,用表示更换费用。
(1)求①号面需要更换的概率;
(2)求6个面中恰好有2个面需要更换的概率;
(3)写出的分布列,求的数学期望。