(用数字表示结果)某校举行环保知识大奖赛,比赛分初赛和决赛两部分,初赛采用选一题答一题的方式进行。每位选手最多有5次答题机会。选手累计答对3题或答错三题终止初赛的比赛。答对三题直接进入决赛,答错3题则被淘汰。已知选手甲连续两次答错的概率为(已知甲回答每个问题的正确率相同,并且相互之间没有影响)(1)求选手甲回答一个问题的正确率;(2)求选手甲进入决赛的概率;(3)设选手甲在初赛中答题个数为X,试写出X的分布列,并求甲在初赛中平均答题个数。
.(本小题满分12分).如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.(1)求该弦椭圆的方程;(2)求弦AC中点的横坐标; (3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.
(本小题满分12分)已知双曲线的中心在原点,对称轴为坐标轴,焦点在x轴上,两准线间的距离为,并且与直线相交所得线段中点的横坐标为,求这个双曲线方程。
(本小题满分12分)如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB//CD,AB="4," BC="CD=2, " AA="2, " E、E、F分别是棱AD、AA、AB的中点。(1) 证明:直线EE//平面FCC;(2) 求二面角B-FC-C的余弦值。
(本小题满分12分)如图四棱锥的底面是正方形,,点E在棱PB上,O为AC与BD的交点。(1)求证:平面;(2)当E为PB中点时,求证://平面PDA,//平面PDC。(3)当且E为PB的中点时,求与平面所成的角的大小。
(本小题满分12分)设,其中为正实数(1)当时,求的极值点;(2)若为上的单调函数,求的取值范围。