(用数字表示结果)某校举行环保知识大奖赛,比赛分初赛和决赛两部分,初赛采用选一题答一题的方式进行。每位选手最多有5次答题机会。选手累计答对3题或答错三题终止初赛的比赛。答对三题直接进入决赛,答错3题则被淘汰。已知选手甲连续两次答错的概率为(已知甲回答每个问题的正确率相同,并且相互之间没有影响)(1)求选手甲回答一个问题的正确率;(2)求选手甲进入决赛的概率;(3)设选手甲在初赛中答题个数为X,试写出X的分布列,并求甲在初赛中平均答题个数。
已知,且0<<<. (Ⅰ)求的值; (Ⅱ)求.
已知函数(,是不同时为零的常数). (1)当时,若不等式对任意恒成立,求实数的取值范围; (2)求证:函数在内至少存在一个零点.
已知函数,其中为常数,且函数图像过原点. (1)求的值; (2)证明:函数在[0,2]上是单调递增函数; (3)已知函数,求g(x)≥0时x的取值范围.
A、B、C、D、E五位学生的数学成绩x与物理成绩y(单位:分)如下表:
(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程; (参考数值: ,) (2)若学生F的数学成绩为90分,试根据(1)求出的线性回归方程,预测其物理成绩(结果保留整数).
已知函数. (1)求函数的定义域及的值; (2)判断函数的奇偶性; (3)判断在(0,+∞)上的单调性,并给予证明.