高中数学

已知是三条不同的直线,是两个不同的平面,下列命题为真命题的是 (    )

A.若,则
B.若,则
C.若,则
D.若,则
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知在侧棱垂直于底面三棱柱ABC—A1B1C1中,AC=3,AB=5,BC=4,AA1=4,点D是AB的中点.                
(Ⅰ)求证:AC⊥BC1;
(Ⅱ)求证:AC1∥平面CDB1.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,平面PAC⊥平面ABC,点E、F、O分别为线段PA、PB、AC的中点,点G是线段CO的中点,AB=BC=AC=4,PA=PC=2.求证:

(1)PA⊥平面EBO;
(2)FG∥平面EBO.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

若直线与平面相交与一点A,则下列结论正确的是( )

A.内的所有直线与异面 B.内不存在与平行的直线
C.内存在唯一的直线与平行  D.内的直线与都相交
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如果直线a∥直线b,且a∥平面α,那么b与α的位置关系是(    )

A.相交 B.b∥α C.bα D.b∥α或bα
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

表示两条不同的直线,表示两个不同的平面,则下列命题不正确的是( )

A.,则//
B.,则
C.,则
D.,则
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知表示两条不同直线,表示三个不同平面,给出下列命题:
①若
②若垂直于内的任意一条直线,则
③若
④若不垂直于平面,则不可能垂直于平面内的无数条直线;
⑤若,则
上述五个命题中,正确命题的个数是(    )个

A.5 B.4 C.3 D.2
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知平面,则下列说法正确的是(  )

A.,则
B.,则
C.,则
D.,则
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设a,b是两条直线,α,β是两个平面,则由下列条件可以得到的是    (    )

A.
B.
C.
D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

下列命题:
①平行于同一平面的两直线相互平行;
②平行于同一直线的两平面相互平行;
③垂直于同一平面的两平面相互平行;
④垂直于同一直线的两平面相互平行;
⑤垂直于同一直线的两直线相互平行.        
其中正确的有( )

A.4个 B.3个 C.2个 D.1个
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一个正方体的展开图如图所示,A、B、C、D为原正方体的顶点,则在原来的正方体中(    )

A.AB∥CD                B.AB与CD相交  
C.AB⊥CD                D.AB与CD所成的角为60°

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在正方体中,过的平面与底面的交线为,则直线
位置关系为                .(填“平行”或“相交”或“异面”)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设m,n是两条不同的直线,α,β是两个不同的平面.则( )

A.若m⊥n,n∥α,则m⊥α
B.若m∥β,β⊥α,则m⊥α
C.若m⊥β,n⊥β,n⊥α,则m⊥α
D.若m⊥n,n⊥β,β⊥α,则m⊥α
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在直三棱柱中,AA1="AB=BC=3,AC=2," D是AC的中点.

(1)求证:B1C∥平面A1BD;
(2)求平面A1DB与平面DBB1夹角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥P-ABCD中,底面为直角梯形,垂直于底面ABCD,PA=AD=AB=2BC=2,M,N分别为PC,PB的中点.

(Ⅰ)求证:PB⊥DM;
(Ⅱ)求点B到平面PAC的距离.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学平行线法试题