设m.n是两条不同的直线,α.β是两个不同的平面,则正确的是( )
A.若m∥α,n∥α,则m∥n |
B.若m∥α,m∥β,则α∥β |
C.若m∥n,m⊥α,则n⊥α |
D.若m∥α,α⊥β,则m⊥β |
已知直线与平面,给出下列三个结论:
①若∥,∥,则∥;
②若∥,,则;
③若,∥,则.
其中正确的个数是 ( )
A.0 | B.1 | C.2 | D.3 |
在长方体中,,过,,三点的平面截去长方体的一个角后,得到如图所示的几何体,这个几何体的体积为.
(1)证明:直线∥平面;
(2)求棱的长;
(3)在线段上是否存在点,使直线与垂直,如果存在,求线段的长,如果不存在,请说明理由.
若m、n是两条不同的直线,α、β、γ是三个不同的平面,则下列命题中真命题是( )
A.若m⊥β,m∥α,则α⊥β |
B.若α∩γ=m,β∩γ=n,m∥n,则α∥β |
C.若m⊂β,α⊥β,则m⊥α |
D.若α⊥γ,α⊥β,则β⊥γ |
已知是两条不同直线,是两个不同平面,给出四个命题:
①若,则
②若,则
③若,则
④若,,,则
其中正确的命题是 ( ).
A.②③ | B.①② | C.②④ | D.①④ |
设是两条不同的直线,是两个不同的平面,则下列命题为真命题的是( )
A.若 |
B.若 |
C.若 |
D.若 |
(本小题满分14分)如图,在五面体中,四边形为正方形,,平面平面,且,,点G是EF的中点.
(Ⅰ)证明:;
(Ⅱ)若点在线段上,且,求证://平面;
(Ⅲ)已知空间中有一点O到五点的距离相等,请指出点的位置. (只需写出结论)
(本小题满分14分)如图,在三棱柱中,各个侧面均是边长为的正方形,为线段的中点.
(Ⅰ)求证:⊥平面;
(Ⅱ)求证:直线∥平面;
(Ⅲ)设为线段上任意一点,在内的平面区域(包括边界)是否存在点,使,并说明理由.
如图,在多面体中,四边形是正方形,.
.
(Ⅰ) 求证:;
(Ⅱ)求二面角的余弦值的大小.
如图所示,正方体ABCD—A1B1C1D1中,侧面对角线AB1,BC1上分别有两点E,F,且B1E=C1F.求证:EF∥平面ABCD.
如图,在底面为平行四边形的四棱锥中, ,平面,点是的中点.
(1)求证:;
(2)求证:平面;
如图,四边形ABCD为正方形,PD⊥平面ABCD,,AF⊥PC于点F,FE∥CD交PD于点E.
(1)证明:CF⊥平面ADF;
(2)若,证明平面
(本小题满分14分)如图,在四面体中,,点是的中点,点在线段上,且.
(1)若∥平面,求实数的值;
(2)求证:平面平面.