高中数学

(本小题满分10分)某校100位学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:

(Ⅰ)求图中的值;
(Ⅱ)根据频率分布直方图,估计这100名学生语文成绩的平均分.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

中华人民共和国《道路交通安全法》中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量(简称血酒含量,单位是毫克/毫升),当时,为“酒后驾车”;当时,为“醉酒驾车”.某市公安局交通管理部门于月的某天晚上点至点在该市区解放路某处设点进行一次拦查行动,共依法查出了名饮酒后违法驾驶机动车者,如图为这名驾驶员抽血检测后所得结果画出的频率分布直方图(其中的人数计入人数之内).

(Ⅰ)求此次拦查中“醉酒驾车”的人数;
(Ⅱ)从违法驾车的人中按“酒后驾车”和“醉酒驾车”利用分层抽样抽取人做样本进行研究,再从抽取的人中任取人,求人中其中人为“酒后驾车”另人为“醉酒驾车”的概率.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.

分数段
[50,60)
[60,70)
[70,80)
[80,90)
x:y
1:1
2:1
3:4
4:5

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

随着工业化的发展,环境污染愈来愈严重.某市环保部门随机抽取60名市民对本市空气质量满意度打分,把数据分六段后得到如下频率分布表:

分组
频数
频率


















合计


(1)求表中数据的值;
(2)用分层抽样的方法在分数的市民中抽取容量为的样本,将该样本看成一个总体,从中任取人在分数段的概率.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:

质量指标值分组
[75,85)
[85,95)
[95,105)
[105,115)
[115,125)
频数
4
16
40
32
8

(1)在答题卡上作出这些数据的频率分布直方图;(用阴影涂黑)

(2)估计这种产品质量指标值的平均数及中位数;
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的75%”的规定?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.

(Ⅰ)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?
(Ⅱ)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某校50名学生参加2013年全国数学联赛初赛,成绩全部介于90分到140分之间.将成绩结果
按如下方式分成五组:第一组,第二组, ,第五组.按上述分组
方法得到的频率分布直方图如图所示.
(1)若成绩大于或等于100分且小于120分认为是良好的,求该校参赛学生在这次数学联赛中成绩良好
的人数;
(2)若从第一、五组中共随机取出两个成绩,求这两个成绩差的绝对值大于30分的概率.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

医生的专业能力参数可有效衡量医生的综合能力,越大,综合能力越强,并规定: 能力参数不少于30称为合格,不少于50称为优秀.某市卫生管理部门随机抽取300名医生进行专业能力参数考核,得到如图所示的能力的频率分布直方图:

(Ⅰ)求出这个样本的合格率、优秀率;
(Ⅱ)现用分层抽样的方法从中抽出一个样本容量为20的样本,再从这20名医生中随机选出2名.
①求这2名医生的能力参数为同一组的概率;
②设这2名医生中能力参数为优秀的人数为,求随机变量的分布列和期望.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

国家环境标准制定的空气质量指数与空气质量等级对应关系如下表:

由全国重点城市环境监测网获得2月份某五天甲城市和乙城市的空气质量指数数据用茎叶图表示如图:

(Ⅰ)试根据上面的统计数据,判断甲、乙两个城市的空气质量指数的方差的大小关系(只需写出结果);
(Ⅱ)试根据上面的统计数据,估计甲城市某一天空气质量等级为2级良的概率;
(Ⅲ)分别从甲城市和乙城市的统计数据中任取一个,试求这两个城市空气质量等级相同的概率.
(注:s2=[(x12+(x22+…+(xn2],其中为数据x1,x2,…,xn的平均数.)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].

(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,
求数学成绩在[50,90)之外的人数.

分数段
[50,60)
[60, 70)
[70,80)
[80,90)
x∶y
1∶1
2∶1
3∶4
4∶5

 

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组,第二组 ,第五组.下图是按上述分组方法得到的频率分布直方图.按上述分组方法得到的频率分布直方图.

(Ⅰ)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(Ⅱ)设m,n表示该班某两位同学的百米测试成绩,且已知求事件“”发生的概率.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某校联合社团有高一学生126人,高二学生105人,高三学生42人,现
用分层抽样的方法从中抽取13人进行关于社团活动的问卷调查.设问题的选择分为“赞同”和“不赞同”两种,且每人都做出了一种选择.下面表格中提供了被调查学生答卷情况的部分信息.
(1)完成下列统计表:

(2)估计联合社团的学生中“赞同”的人数;
(3)从被调查的高二学生中选取2人进行访谈,求选到的两名学生中恰好有一人“赞同”的概率.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)
某校从参加高二年级期中考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:

(1)求分数在内的频率,并补全这个频率分布直方图;
(2)根据频率分布直方图,估计本次数学成绩的平均数;
(3)用分层抽样的方法在分数段为的学生中抽取一个容量为的样本,将该样本看成一个总体,从中任取人,求恰好有人分数在的概率.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在30分以下的学生后,共有男生300名,女生200名.现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.

分数段
[40,50)
[50,60)
[60,70)
[70,80)
[80,90)
[90,100]

3
9
18
15
6
9

6
4
5
10
13
2

 
估计男、女生各自的成绩平均分(同一组数据用该组区间中点值作代表),从计算结果看,判断数学成绩与性别是否有关;

 
优分
非优分
合计
男生
 
 
 
女生
 
 
 
合计
 
 
100

 
(2)规定80分以上为优分(含80分),请你根据已知条件作出列联表,并判断是否有以上的把握认为“数学成绩与性别有关”.
附表及公式


0.100
0.050
0.010
0.001

2.706
3.841
6.635
10.828

.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组,第二组, ,第五组.如图是按上述分组方法得到的频率分布直方图.

(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(2)设表示该班某两位同学的百米测试成绩,且已知,求事件“”的概率.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学误差估计解答题