某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组,第二组, ,第五组.如图是按上述分组方法得到的频率分布直方图.(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;(2)设表示该班某两位同学的百米测试成绩,且已知,求事件“”的概率.
如图,平面平面,四边形为矩形,.为的中点,. (1)求证:; (2)若与平面所成的角为,求二面角的余弦值.
已知数列中,,. (1)求证:数列是等差数列,并求的通项公式; (2)设,,试比较与的大小.
△中,角,,所对的边分别为,,.若,. (1)求角的取值范围; (2)求的最小值.
如图,是⊙的直径,是⊙的切线,与的延长线交于点,为切点.若,,的平分线与和⊙分别交于点、,求的值.
设函数 (1)若关于x的不等式在有实数解,求实数m的取值范围; (2)设,若关于x的方程至少有一个解,求p的最小值. (3)证明不等式: