某校50名学生参加2013年全国数学联赛初赛,成绩全部介于90分到140分之间.将成绩结果按如下方式分成五组:第一组,第二组, ,第五组.按上述分组方法得到的频率分布直方图如图所示.(1)若成绩大于或等于100分且小于120分认为是良好的,求该校参赛学生在这次数学联赛中成绩良好的人数;(2)若从第一、五组中共随机取出两个成绩,求这两个成绩差的绝对值大于30分的概率.
.(本小题满分13分) 已知D为的边BC上一点,且 (1)求角A的大小; (2)若的面积为,且,求BD的长。
(本小题满分13分) 已知集合 (1)若,求m的值; (2)若,求m的取值范围。
.(本小题满分12分) 已知正项数列满足: (1)求的范围,使得恒成立; (2)若,证明 (3)若,证明:
(本小题满分12分) 如题21图,已知离心率为的椭圆过点M(2,1),O为坐标原点,平行于OM的直线交椭圆C于不同的两点A、B。 (1)求椭圆C的方程。 (2)证明:直线MA、MB与x轴围成一个等腰三角形。
(本小题满分12分) 两非零向量满足:垂直,集合是单元素集合。 (1)求的夹角; (2)若关于t的不等式的解集为空集,求实数m的值。