某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.(Ⅰ)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(Ⅱ)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.
已知动圆过点,且与圆相内切. (1)求动圆的圆心的轨迹方程; (2)设直线(其中与(1)中所求轨迹交于不同两点,D,与双曲线交于不同两点,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.
已知函数。 (1):当时,求函数的极小值; (2):试讨论函数零点的个数。
直线过点P(斜率为,与直线:交于点A,与轴交于点B,点A,B的横坐标分别为,记. (Ⅰ)求的解析式; (Ⅱ)设数列满足,求数列的通项公式; (Ⅲ)在(Ⅱ)的条件下,当时,证明不等式.
在正三角形中,、、分别是、、边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1)。将△沿折起到的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P(如图2) (Ⅰ)求证:A1E⊥平面BEP; (Ⅱ)求直线A1E与平面A1BP所成角的大小; (Ⅲ)求二面角B-A1P-F的大小(用反三角函数表示)
为预防病毒暴发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:
已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33. (1)求的值; (2)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取多少个? (3)已知,求不能通过测试的概率.