(本小题满分12分)已知,若在区间上的最大值,最小值,设(1)求的解析式;(2)判断单调性,求的最小值.
在平面直角坐标系中,设锐角的始边与轴的非负半轴重合,终边与单位圆交于点,将射线绕坐标原点按逆时针方向旋转后与单位圆交于点. 记.(Ⅰ)讨论函数的单调性;(Ⅱ)设的角所对的边分别为,若,且,,求的面积.
选修4-5:不等式选讲已知函数.(Ⅰ)若不等式的解集为,,求证:.(Ⅱ)若在(Ⅰ)的条件下,存在实数t,使得成立,求实数m的取值范围.
选修4-5:不等式选讲 已知函数 , (Ⅰ)解关于的不等式 (Ⅱ)若函数的图象恒在函数的上方,求实数的取值范围.
选修4-4:坐标系与参数方程已知曲线:,直线:(为参数).(Ⅰ)写出曲线的参数方程,直线的普通方程;(Ⅱ)过曲线上任一点作与夹角为的直线,交于点,求的最大值与最小值.
选修:几何证明选讲如图,已知圆的两弦和相交于点,是圆的切线,为切点,.求证:(Ⅰ);(Ⅱ)∥.