(本小题满分12分)袋中有分别写着“团团”和“圆圆”的两种玩具共7个,且形状完全相同,从中任取2个玩具都是“圆圆”的概率为,A、B两人不放回从袋中轮流摸取一个玩具,A先取,B后取,然后A再取,……直到两人中有一人取到“圆圆”时即停止游戏,每个玩具在每一次被取出的机会是均等的,用表示游戏终止时取玩具的次数。(1)求袋中“圆圆”的个数; (2)求3的概率。
关于x的方程2x2-tx-2=0的两根为函数f(x)=(1)求f(的值。(2)证明:f(x)在[上是增函数。(3)对任意正数x1.x2,求证:
(本小题满分14分)如图:直平行六面体ABCD-A1B1C1D1,底面ABCD是边长为2a的菱形,∠BAD=600,E为AB中点,二面角A1-ED-A为600(I)求证:平面A1ED⊥平面ABB1A1;(II)求二面角A1-ED-C1的余弦值;(III)求点C1到平面A1ED的距离。
(本小题满分12分)(I)求向量;(II)若映射①求映射f下(1,2)原象;②若将(x、y)作点的坐标,问是否存在直线l使得直线l上任一点在映射f的作用下,仍在直线上,若存在求出l的方程,若不存在说明理由
(本小题满分14分)数列(1)若数列(2)求数列的通项公式(3)数列适合条件的项;若不存在,请说明理由
(本小题满分12分)在△ABC中,已知 且求的值。