高中数学

某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下部分频率分布直方图.观察图形给出的信息,回答下列问题:

(1)求第四小组的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分(保留小数点后2位).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)某城市户居民的月平均用电量(单位:度),以分组的频率分布直方图如图.

(1)求直方图中的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某班同学利用国庆节进行社会实践,对岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:

(Ⅰ)补全频率分布直方图并求的值;
(Ⅱ)从年龄段在的“低碳族”中采用分层抽样法抽取人参加户外低碳体验活动,其中选取人作为领队,求选取的名领队中恰有1人年龄在岁的概率.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

假定下述数据是甲、乙两个供货商的交货天数:
甲:10 9 10 10 11 11 9 11 10 10
乙:8 10 14 7 10 11 10 8 15 12
估计两个供货商的交货情况,并问哪个供货商交货时间短一些,哪个供货商交货时间较具一致性与可靠性.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某电视台举办了“中华好声音”大型歌手选秀活动,过程分为初赛、复赛和决赛,经初赛进入复赛的40名选手被平均分成甲、乙两个班,由组委会聘请两位导师各负责一个班进行声乐培训。下面是根据这40名选手参加复赛时获得的100名大众评审的支持票数制成的茎叶图:

赛制规定:参加复赛的40名选手中,获得的支持票数排在前5名的选手可进入决赛,若第5名出现并列,则一起进入决赛;另外,票数不低于95票的选手在决赛时拥有“优先挑战权”。
1、从进入决赛的选手中随机抽出3名,求其中恰有1名拥有“优先挑战权”的概率;
2、电视台决定,复赛票数不低于85票的选手将成为电视台的“签约歌手”,请填写下面的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成为‘签约歌手’与选择的导师有关?

 
甲班
乙班
合计
签约歌手
 
 
 
末签约歌手
 
 
 
合计
 
 
 

下面临界值表仅供参考:

P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828

参考公式:K2= ,其中

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分14分)下面的茎叶图记录了甲、乙两代表队各10名同学在一次英语听力比赛中的成绩(单位:分).已知甲代表队数据的中位数为76,乙代表队数据的平均数是75.

(1)求的值;
(2)若分别从甲、乙两队随机各抽取1名成绩不低于80分的学生,求抽到的学生中,甲队学生成绩不低于乙队学生成绩的概率;
(3)判断甲、乙两队谁的成绩更稳定,并说明理由(方差较小者稳定).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(理科)(本小题满分12分)PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,根据现行国家标准GB3095 – 2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米 ~ 75毫克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标。从某自然保护区2012年全年每天的PM2.5监测值数据中随机地抽取10天的数据作为样本,监测值频数如下表所示:

PM2.5日均值
(微克/立方米)
[25,35]
(35,45]
(45,55]
(55,65]
(65,75]
(75,85]
频数
3
1
1
1
1
3

(1)从这10天的PM2.5日均值监测数据中,随机抽取3天,求恰有1天空气质量达到一级的概率;(2)从这10天的数据中任取3天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列;(3)以这10天的PM2.5日均值来估计一年的空气质量状况,则一年(按366天算)中平均有多少天的空气质量达到一级或二级。(精确到整数)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某市交管部门为了宣传新交规举办交通知识问答活动,随机对该市15~65岁的人群抽样,回答问题统计结果如图表所示.

组别
分组
回答正确的人数
回答正确的人数占本组的概率
第1组
[15,25)
5
0.5
第2组
[25,35)

0.9
第3组
[35,45)
27

第4组
[45,55)

0.36
第5组
[55,65)
3

 
(1)分别求出的值;
(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?
(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

甲、乙两同学的6次考试成绩分别为:















 
(Ⅰ)画出甲、乙两同学6次考试成绩的茎叶图;
(Ⅱ)计算甲、乙两同学考试成绩的方差,并对甲、乙两同学的考试成绩做出合理评价.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某工厂对某产品的产量与单位成本的资料分析后有如下数据:

月    份
1
2
3
4
5
6
产量x千件
2
3
4
3
4
5
单位成本y元/件
73
72
71
73
69
68

(Ⅰ)求单位成本y与月产量x之间的线性回归方程.(其中已计算得:,结果保留两位小数)
(Ⅱ)当月产量为12千件时,单位成本是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表.

次数
1
2
3
4
5
6

27
38
30
37
35
31

33
29
38
34
28
36

(1)画出茎叶图,由茎叶图判断哪位选手的成绩较稳定?
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、中位数、标准差,并判断选谁参加
比赛更合适.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

以下茎叶图记录了甲、乙两名射击运动员训练的成绩(环数),射击次数为4次.

(1)试比较甲、乙两名运动员射击水平的稳定性;
(2)每次都从甲、乙两组数据中随机各选取一个进行比对分析,共选取了4次(有放回选取).设选取的两个数据中甲的数据大于乙的数据的次数为,求的分布列及数学期望.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分10分)某地区100位居民的人均月用水量(单位:t)的频率分布直方图及频数分布表如下:

分组
频数
[0,0.5)
4
[0.5,1)
8
[1,1.5)
15
[1.5,2)
22
[2,2.5)
25
[2.5,3)
14
[3,3.5)
6
[3.5,4)
4
[4,4.5]
2
合计
100

 
(1)根据频率分布直方图估计这组数据的众数与平均数;
(2)当地政府制定了人均月用水量为3t的标准,若超出标准加倍收费,当地政府解释说,85%以上的居民不超出这个标准,这个解释对吗?为什么?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图是校园“十佳歌手”大奖赛上,七位评委为甲、乙两位选手打出的分数的茎叶图.

(1)写出评委为乙选手打出分数数据的众数,中位数;
(2)求去掉一个最高分和一个最低分后,两位选手所剩数据的平均数和方差,根据结果比较,哪位选手的数据波动小?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

佛山某中学高三(1)班排球队和篮球队各有名同学,现测得排球队人的身高(单位:)分别是:,篮球队人的身高(单位:)分别是:.

(Ⅰ)请把两队身高数据记录在如图所示的茎叶图中,并指出哪个队的身高数据方差较小(无需计算);
(Ⅱ)现从两队所有身高超过的同学中随机抽取三名同学,则恰好两人来自排球队一人来自篮球队的概率是多少?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学误差估计解答题