高中数学

已知空间直角坐标系o﹣xyz中的点A的坐标为(1,1,1),平面α过点A且与直线OA垂直,动点P(x,y,z)是平面α内的任一点,则点P的坐标满足的条件是      

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥P-ABCD中,底面为菱形,且

(Ⅰ)求证:
(Ⅱ)若,求二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知三棱柱中,底面分别是棱的中点.

(1)求证:平面
(2)求证:平面
(3)求三棱锥的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在梯形ABCD中,AB∥CD,AB平面α,CD平面α,则直线CD与平面α内的直线的位置关系可能是________.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

对于四面体,以下说法中,正确的序号为       (多选、少选、选错均不得分).
①若中点,则平面⊥平面
②若,则
③若所有棱长都相等,则该四面体的外接球与内切球的半径之比为2:1;
④若以为端点的三条棱所在直线两两垂直,则在平面内的射影为的垂心;
⑤分别作两组相对棱中点的连线,则所得的两条直线异面。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

给出四个命题:
①平行于同一平面的两个不重合的平面平行;
②平行于同一直线的两个不重合的平面平行;
③垂直于同一平面的两个不重合的平面平行;
④垂直于同一直线的两个不重合的平面平行;
其中真命题的序号是________.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

三棱锥中,是该三棱锥外部(不含表面)的一点,给出下列四个命题,
① 存在无数个点,使
② 存在唯一点,使四面体为正三棱锥;
③ 存在无数个点,使
④ 存在唯一点,使四面体有三个面为直角三角形.
其中正确命题的序号是       .

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设l,m是不同的直线,α,β,γ是不同的平面,则下列命题正确的是______________.
①若l⊥m,m⊥α,则l⊥α或 l∥α         
②若l⊥γ,α⊥γ,则l∥α或 lα
③若l∥α,m∥α,则l∥m或 l与m相交    
④若l∥α,α⊥β,则l⊥β或lβ

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图是棱长为的正方体的平面展开图,则在原正方体中,

平面;   
平面
③CN与BM成角;
④DM与BN垂直.
以上四个命题中,正确命题的序号是____  ____。 (写出所有正确命题的序号)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在正方体中,点为正方形 的中心.下列说法正确的是     (写出你认为正确的所有命题的序号).
①直线与平面所成角的正切值为
②若,分别是正方形 , 的中心,则
③若,分别是正方形 , 的中心,则
④平面中不存在使成立的点.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

所在平面外一点,作,垂足为,连接,,,若==,则          

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,正方体的棱长为1,线段上有两个动点,且,则下列结论中正确的有          .(填写你认为正确的序号)



③若上的一动点,则三棱锥的体积为定值;
④在空间与直线都相交的直线只有1条。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,所在的平面,是圆的直径,是圆上的一点,分别是点上的射影,给出下列结论:

;②;③;④
其中正确命题的序号是      

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,在四边形中,,将四边形沿对角线折成四面体,使平面平面,则下列结论正确的是         

(1)
(2)
(3)与平面所成的角为;   
(4)四面体的体积为

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点M在线段PQ上,E,F分别为AB,BC的中点,设异面直线EM与AF所成的角为,则的最大值为      

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学空间向量的应用填空题