已知直线,平面,且,,给出下列四个命题:
①若∥,则;②若,则∥;
③若,则∥;④若∥,则;
其中为真命题的序号是_______
设a、b为空间的两条直线,α、β为空间的两个平面,给出下列命题:
①若a∥α,a∥β,则α∥β;②若a⊥α,a⊥β,则α⊥β;
③若a∥α,b∥α,则a∥b;④若a⊥α,b⊥α,则a∥b.
上述命题中,所有真命题的序号是 .
如图所示,E、F分别是正方形SD1DD2的边D1D、DD2的中点沿SE,SF,EF将其折成一个几何体,使D1,D,D2重合,记作D。给出下列位置关系:①SD⊥面DEF; ②SE⊥面DEF; ③DF⊥SE; ④EF⊥面SED,其中成立的有
已知直线、,平面、,给出下列命题:
①若,且,则 ②若,且,则
③若,且,则 ④若,且,则
其中正确的命题的个数为 _ _.
已知正三棱柱P-ABC,点P,A,B,C都在半径为 的求面上,若PA,PB,PC两两互相垂直,则球心到截面ABC的距离为.
考察下列三个命题,在“________”都缺少同一个条件,补上这个条件使其构成真命题(其中为不同直线,为不同平面),则此条件为______________.
① ; ② ; ③
已知平面,直线满足:,那么
①; ②; ③; ④。
可由上述条件可推出的结论有 ;
如图所示,AB是⊙O的直径,⊙O,C为圆周上一点,若,,则B点到平面PAC的距离为 。
给出下列四个命题:
①过平面外一点,作与该平面成角的直线一定有无穷多条。
②一条直线与两个相交平面都平行,则它必与这两个平面的交线平行;
③对确定的两条异面直线,过空间任意一点有且只有一个平面与这两条异面直线都平行;
④对两条异面的直线,都存在无穷多个平面与这两条直线所成的角相等;
其中正确的命题序号为