(本小题满分14分)如图,在三棱锥P- ABC中,已知平面PBC 平面ABC.
(1)若ABBC,CPPB,求证:CPPA:
(2)若过点A作直线⊥平面ABC,求证://平面PBC.
(本小题满分13分)在四棱锥中,底面是正方形,与交于点,底面,为的中点.
(Ⅰ)求证:∥平面;
(Ⅱ)求证:;
(Ⅲ)若在线段上是否存在点,使平面?
若存在,求出 的值,若不存在,请说明理由.
(本小题满分15分)如图,已知的直径,点为上异于,的一点,平面,且,点为线段的中点.
(Ⅰ)求证:平面;
(Ⅱ)若,求直线与平面所成角的大小.
在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面
ABCD,AE⊥BD,CB=CD=CF=1,
(1)求证:BD⊥平面AED;
(2)求B到平面FDC的距离.
如图,四棱锥中,底面,,,.
(1)求证:平面;
(2)若侧棱上的点满足,求三棱锥的体积.
如图,在四棱台中,平面,底面是平行四边形,,,.
(1)证明:;
(2)证明:平面.
如图,AB是圆O的直径,点C是弧AB的中点,点V是圆O所在平面外一点,是AC的中点,已知,.
(1)求证:AC⊥平面VOD;
(2)求三棱锥的体积.
如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在弧AB上,且OM∥AC.
(1)求证:平面MOE∥平面PAC.
(2)求证:平面PAC⊥平面PCB.
(3)设二面角M—BP—C的大小为θ,求cos θ的值.
如图,在五面体中,已知平面,,,,.
(1)求证:;
(2)求三棱锥的体积.
如图,直三棱柱中,、分别是棱、的中点,点在棱上,已知,,.
(1)求证:平面;
(2)设点在棱上,当为何值时,平面平面?
如图已知:菱形所在平面与直角梯形ABCD所在平面互相垂直,,点分别是线段的中点.
(1)求证:平面平面;
(2)试问在线段上是否存在点,使得平面,若存在,求的长并证明;若不存在,说明理由.
如图,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C丄平面ABCD,且AB=BC=CA=,AD=CD=1.
求证:BD⊥AA1;
若四边形是菱形,且,求四棱柱的体积.
如图,、为圆柱的母线,是底面圆的直径,、分别是、的中点,.
(1)证明:;
(2)证明:;
(3)求四棱锥与圆柱的体积比.
如图所示,已知为圆的直径,点为线段上一点,且,点为圆上一点,且.点在圆所在平面上的正投影为点,.
(1)求证:;
(2)求二面角的余弦值.