如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在弧AB上,且OM∥AC.(1)求证:平面MOE∥平面PAC.(2)求证:平面PAC⊥平面PCB.(3)设二面角M—BP—C的大小为θ,求cos θ的值.
(本小题满分14分)(1)已知ex≥ax +1,对恒成立,求a的取值范围;(2)己知,0<x<m,求证f(x)<.
(本小题满分12分)己知函数f(x)= (1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求证:当x∈(0,1)时,f(x)>2(3)设实数k使得f(x)>k对x∈(0,1)恒成立,求k的最大值.
(本小题满分12分)已知函数是R上的偶函数,其图象关于点M对称(1)求的值;(2)求的单调递增区间;(3)x∈,求f(x)的最大值与最小值.
(本小题满分12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)己知每检测一件产品需要费用1 00元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望).
(本小题满分10分)己知关于x的不等式|x+a|<b的解集为{x|2<x<4)(1)求实数的值;(2)求的最大值.