(本小题满分12分)己知函数f(x)= (1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求证:当x∈(0,1)时,f(x)>2(3)设实数k使得f(x)>k对x∈(0,1)恒成立,求k的最大值.
已知函数. (Ⅰ)若曲线在点处的切线与直线平行,求实数的值; (Ⅱ)若函数在处取得极小值,且,求实数的取值范围.
已知函数,钝角(角对边为)的角满足. (Ⅰ)求函数的单调递增区间; (Ⅱ)若,求.
已知数列的前项和为满足. (Ⅰ)求数列的通项公式; (Ⅱ)求数列的前项和.
如图,在四棱锥中,底面为直角梯形,且,,平面底面,为的中点,是棱的中点,. (Ⅰ)求证:平面; (Ⅱ)求三棱锥的体积.
已知数列的前项和为满足. (Ⅰ)函数与函数互为反函数,令,求数列的前项和; (Ⅱ)已知数列满足,证明:对任意的整数,有.